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LETTER TO THE EDITOR 

Ladder operator relations for hypergeometric functions 

U Laha, C Bhattacharyya and B Talukdar 
Department of Physics, Visva-Bharati University, Santiniketan-731 235, West Bengal, India 

Received 1 April 1986 

Abstract. Two first-order differential operators are introduced to generate recursion for- 
mulae for hypergeometric functions. These operators, on the one hand, factorise the 
associated second-order operator and, on the other hand, reproduce the equations resulting 
from the action of the supersymmetry generators on the positive-energy solution of the 
Coulomb field. Our results for the confluent hypergeometric functions also provide a 
natural basis for constructing ladder operator recursion relations for the Coulomb Green 
function with the outgoing wave boundary condition. 

In this letter we derive a simple factorisation method for differential equations satisfied 
by hypergeometric functions. We achieve this by constructing a pair of first-order 
differential operators, O(F), Our construction procedure is, however, different from 
that of Infeld and Hull [l]. Interestingly, the operators O(T) will be seen to generate 
ladder operator relations which have their counterparts in supersymmetric quantum 
mechanics [ 2 ] .  Furthermore, the results for the confluent hypergeometric functions 
will be useful in constructing expressions for raising and lowering operators for the 
Coulomb Green function with the outgoing wave boundary condition. 

The confluent hypergeometric function satisfies the differential equation 

d2Y dY x-+(c -x )  --ay = 0. 
dx2 dx 

The regular and irregular solutions of equation (1) are given by [3] 

rye) r ( a + n )  xn  
y , = @ ( a ;  c; x)=- -- 

r ( a )  “=a  r ( c + n )  n !  

and 

(3) 
r(i - C) r ( c  - 1) 

y*=*(a; c; X)‘ @ ( a ;  c; x)+- x1-caq a + 1 - c; 2 - c; x). r(i + a  -c)  U a )  

To derive a factorisation method for the second-order differential operator in 
equation (1) we proceed as follows. 

Lemma 1. The differential operators 
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represent the raising and lowering operators for a( ) with 

t‘-)(x) = lim @(a;  c; x) 
x-to 

and 

[‘+’(x) = lim * ( a ;  c; x). 
x-to 

Proof: From equations (1) and (3) one can immediately see that 

t‘-’(x) - exp(ax/c) 
x-0 

and 

We now use equations (4), (7) and (8) to construct explicit expressions for O(r). From 
the results for O‘”@( a )  we can write 

a ( c - a )  
(--&+;)@(a; c; x)=-- c’( c + 1) x @ ( a + l ;  c+2; x)  (9) 

and 

(10) 
d 1 - c  l + a - c  1 - C  (-z +-+-)w; x 2 - c  c; x)=-@(u- l ;  X c - 2 ;  x). 

In deriving equations (9) and (10) we have made use of equation (2) together with 
the well known differential property of @ ( a ;  c ;  x). Equations (9) and (10) prove the 
lemma. 

Lemma 2. The operators in equation (4), or equivalently those in (9) and (lo), are 
also the raising and lowering operators for * ( a ;  c; x). 

Proof: Using the differential property of * ( a ;  c; x)  we have 

( -&+: ) * (a ;  c; x ) = a * ( a + l ;  c + l ;  x)+-*(a; a c ;  x). 
C 

The right-hand side of equation (1 1) can be reduced to a single V( ) by employing 
the recursion relations [3] 

d 
dx 

* ( a ;  c+1; x )=* (a;  c;x)--*(a; c;x) (12) 

and 

( c - a ) * ( a ;  c; x)+VI (a- l ;  c; x)-x*(u; c + l ;  x)=O. 

We obtain 

a 
( - $ + ; ) * ( a ;  c; x ) = - x * ( a + l ;  C c+2; x). 
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Again, 
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d +-+-)*(a; 1 -c  I+u-c c; x) (-z x 2 - c  

= a V ( a + l ;  c + l ; x ) +  

Equation (15) can be combined with the integral representation [3] 

d t  e-"' ta-l(  1 + t )c -a - l  * ( a ;  c; x)=- 
T ( a )  ' J  0 

to write 

d 1-c l + a - c  c -a -1  
c; x) =- * (a- l ;  c-2; x). (-dx x 2 - c  (c-2)x 

Equations (14) and (17) prove the lemma. 

It is straightforward to verify that the first-order diff erential-diff erence equations (9) 
and (10) are equivalent to the second-order equation in (1). For a + a + 1 and c + c + 2 
equation (10) reads 

Operating [x(d/dx)+(c+ 1) + ( a  - c/c)x] on equation (9) we obtain 

U - c  )( d@(:xc; X) U 
(x$+(c+l)+-x C - +-@(a; C c; x) 

x @(a+l ;  c+2; x). 
C 

Equations (9), (18) and (19) can now be combined to obtain equation (1). 
The recipe in equation (4) can also be used to generate ladder operator relations 

for the Gaussian hypergeometric function and the associated factorisation is obvious. 
The Gaussian function satisfies the differential equation 

dx 
d2 ( dx2 

~ ( 1  -x)  -+ [ C  - ( U  + b + l ) ~ ]  

From equation (20) behaviour of the regular function y ,  = F (  a, b; c; x) near the origin 
is obtained as 

t(-)(x) - exp( abx/ c) (21) 
x-0 

while that for the irregular function y 2  = x'-'F( 1 + a - c, 1 + 6 - c; 2 - c; x) is of the 
form 

(1 + a  - c)( l+  b - c) 
t(+)(x) - xl-cexp( 

x-0 (2 - c) 
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We now construct the differential operators 0‘’’ from equations (4), (21) and (22), 
and operate them appropriately on F ( a ,  b ;  c; x). After some manipulation we arrive 
at 

F ( a + l ,  b + l ;  ~ + 2 ;  X) 
ab 

and 

d 
dx 2 - c  

[ ( U  + b)(l  - C )  + ab - 11 
- x ( l - x ) - +  

= ( 1  - c ) F (  a - 1,  b - 1;  c - 2; x). (24) 

Thus the operators in equations (23) and (24) turn F ( a ,  b; c; x) into F ( a  + 1, b +  1; c +  
2; x) and F (  a - 1, b - 1; c - 2; x)  respectively. 

The Gaussian hypergeometric equation has three regular singularities at 0, 1 and 
CO while the confluent equation has two singularities, one of which is regular and the 
other irregular. The regular singularity occurs at zero and the irregular at infinity. The 
confluent hypergeometric equation can be derived from the Gaussian equation by 
transforming the independent variable by bx = z and finally letting b + 03. This transfor- 
mation has the effect of merging (confluence) the two regular singularities at x = 0 and 
1 into one regular singularity at z = 0 and converting the singularity at infinity from a 
regular to an irregular one. In particular, we have [4] 

lim [ F ( a ,  b; c; z/b)] =@(a ;  c; z). (25) 
b-rm 

In the following we derive equations (9) and (10) from (23) and (24) by invoking the 
method of confluence of singularities. The substitution bx = z converts equations (23) 
and (24) into the forms 

[ -(;+!) $+:]F(n, b;  c; z / b )  

F ( a + l ,  b + l ;  c + 2 ; z / b )  __- 
c ( c + l )  b C 

- 

and 

{ z( i -  1)  &+A [ ( 5 + 1 ) ( 1 -  c)  -b+ l l  a z + ( 1  - c) I F ( a ,  b; c; z/ b )  

= ( I  - c ) F ( u  - 1, b - 1; c -2; z/b). (27) 
In the limit b + w  equations (26) and (27) in conjunction with (25) yield the results 
in equations (9) and (10). 

Most of the special functions in mathematical physics are connected by simple 
relations either with the confluent or with the Gaussian hypergeometric function. Thus 
equations (9 ) ,  ( lo) ,  (23) and (24) will also generate ladder operator recursion relations 
for the associated special functions. Alternatively, one can also proceed by using our 
ansatz in equation (4). With regard to the second viewpoint we cite the example of 
the incomplete gamma function. For the incomplete gamma function y(  a, x)  satisfying 
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the differential equation [3] 

d2Y dY x - + ( 1 + U + x ) - + ay = 0 
dx2 dx 

we have found that 

1 ( - ; + :) y(a,  x)  = - y(  a + 1, x). 
X 

Also, by considering the behaviour of 

r ( a , x ) = e - ” 9 ( l - a ;  1 - a ;  x)  

we arrive at a lowering relation 

( - ; - l )y(a ,x)=( l -a)y(u- l ,x ) .  (31)  

Some physical applications of the results given above are now in order. In supersym- 
metric quantum mechanics (SQM) [ 2 ]  one often deals with hierarchy problems. For 
example, within the framework of SQM we can generate a Hamiltonian hierarchy, the 
adjacent members of which are ‘supersymmetric partners’ in that they share the same 
eigenvalue spectrum except for the missing ground state [ 5 ] .  In the case of the 
non-relativistic Kepler problem the Hamiltonian hierarchy corresponds to the addition 
of an appropriate centrifugal potential and the so-called accidental degeneracy is 
recovered as a natural consequence. The supersymmetry generators (generators for 
the ‘supersymmetric partner’ Hamiltonian and associated quantities) for the Coulomb 
field are given by [ 6 ]  

with 

the ground-state wavefunction obtained by using n = 1+ 1. From equations (32) and 
(33)  we have 

d 1+1 e’ 
d r  r 1 + 1  

Qj” = 7-+--- (34)  

It has been shown that the relations in equation (34)  are valid for positive energies as 
well [7]. Introducing E = + k 2 / 2  and 77 = - e 2 / k  we write the supersymmetry operators 
Q!” for the positive-energy states as 

d I + l  v k  
d r  r 1+1 

Q j F L  7-+-+- (35)  

The action of the operators @) and 
tion [ 8 ]  

upon the positive-energy Coulomb wavefunc- 

xexp(- ikr)@(l+l  -iq;  21+2;  2ikr)  
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yields 

and 

21+1 
r 

d kT 21+1 
d r  1 r -+-+--ik @ ( I +  1 -iT; 21+2; 2ikr) =-@(l-iT; 21; 2ikr). 

It is of interest to note that equations (37) and (38) are the special cases of (9) and 
(10) when a = l + l - i T ,  c=21+2 and x=2ikr. 

The radial Coulomb Green function GT’(k;  r; r‘) with outgoing wave boundary 
condition [8] is expressed in terms of regular and irregular confluent hypergeometric 
functions. Thus, given equations (9), ( lo ) ,  (14) and (17) one can obtain ladder operator 
recursion relations for Gh:’(k; r, r’) similar to those for the reduced Coulomb Green 
function [9]. 

This work forms part of a research project ‘Some studies in few-body problems’ 
supported by the Department of Atomic Energy, Government of India. The authors 
would like to thank Dr Ranabir Dutt for his kind interest in this work. 
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